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Hierarchical Visual Feature Analysis for City Street View Datasets
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Fig. 1. Exploring ‘perceptual neighborhood’ with our hierarchical clustering of visual features for geographically-embedded images.
From top to bottom: tree representation of the hierarchy as an interactive dendrogram; geo-location of the images as cloropleth map;
circle containment representation of the hierarchy; street-level imagery for geographic regions of the selected hierarchy levels.

Abstract—The visual appearance of city neighborhoods helps us to mentally map urban spaces. For instance, from the visual
features of a city or neighborhood, we gain perspectives on local identity as might be described by their functions, demographics,
or affluence. An effective way to summarize and present this information would be useful, e.g., for urban design and planning. We
explore whether these perspectives can be automatically learned from street-level imagery using a deep neural network and build a
visual analytics tools to explore what is learned. Starting with a dense geo-sampling of city Google Street View data, we train a neural
network to learn visual features. Then, we cluster these features using unsupervised learning to build a similarity hierarchy of visual
appearance. Existing approaches for exploring this kind of geographically-embedded cluster data often have difficulty in addressing
the need to compare across both the visual hierarchy and the geography of the different neighborhoods. To improve this situation, we
develop a visualization scheme which allows users to keep track of both the geographical and semantic interpretations of the data. In
doing so, we aim to provide an exploration tool to aid in the visual study of urban environments.

Index Terms—Machine learning, Hierarchy data, Visualizing spatial and non-spatial data, Coordinated and multiple views.

1 INTRODUCTION

As a first-time visitor to a city, walking the streets and seeing the visual
characteristics of the neighborhoods provides rich insights into local
functions, identity, demographics, affluence, and history. In the 1960s,
this effect was identified by urban planner Lynch [22], who recognized
the foremost impact of visual elements on the ‘mental map’ of the
city’s visitors and residents. In recent years, multiple studies have
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attested the relationship between city visual characteristics and socio-
economical statistics [25, 15, 3, 24, 6].

Thanks to pervasive city imagery datasets such as Google Street
View, we are now equipped with tools to virtually explore cities and
obtain similar knowledge. However, virtually walking the streets to
generate insight is still slow, and tools to analyze the urban environ-
ment in summary from this imagery may hasten insight generation.
As such, we present an application of city street-level image datasets
for the systematic study of urban visual environments. We combine
machine learning and data visualization to help consume, query, and
analyze geographically-located image data.

We start with Lynch’s theory of the five most important urban el-
ements which impact mental maps of a place: paths, edges, nodes,
landmarks, and districts [22]. Four of the five elements—paths, edges,
nodes, and landmarks—denote individual objects which are simple to
define. However, ‘districts’ is harder to define, as it refers to a col-
lection of objects that share similar (potentially visual) qualities. We
postulate that the visual qualities which define districts can be found



in geographically-embedded street view images, where images that are
geo-spatially close and from the same district also tend to be close in
their visual features. By learning what these features are via convolu-
tional neural networks (CNNs), we aim to demark visual boundaries
or ‘perceptual neighborhoods’ rather than administrative districts. As
there are many potential factors that may emerge as we explore the
different perceptual neighborhoods, we create tools to geographically
analyze a hierarchical clustering of the learned visual features. With
this, we provide tools both to help users evaluate the similarities and
dissimilarities of urban districts within and across cities, and to help
evaluate the effectiveness of the underlying machine learning.

Our work applies machine learning and visualization to help solve
visual analytics problems in the study of urban environments. Such
applications within the study of urban form and environmental psy-
chology are uncommon because the discipline is largely taxonomy
based. For example, researchers are often interested in discovering
the distribution of classical and modern buildings, or the distribution
of residential and industrial buildings. However, it is often difficult to
acquire fine-grained ground-truth label data for this problem, which
makes it hard to create a visually-representative model to classify im-
ages of the urban environment. We use hierarchical clustering to let
‘classes’ emerge from a pool of visual features learned on coarse ad-
ministrative boundaries, which provides an alternative way to address
this problem (Sec. 3.4).

The broader problem we set out to solve is hard because street view
image data is often similar and so can be difficult to correctly classify,
and because perceptual neighborhood boundaries are ill defined [35].
As such, assessing the quality of our results requires human judgment
of the learned features (Sec. 3.4). For this task, we propose an in-
teractive analysis of the relative importance of a hierarchy of learned
visual features across clusterings of different data points. In this way,
our work presents a more general tool to help understand the learned
features in a convolutional neural network (Sec. 5).

We also contribute a more general visualization/interaction scheme
to assist the comprehension of geospatially-embedded hierarchical
data. Existing approaches for exploring these data often do not al-
low comparison across both the data hierarchy and the geographical
locations of the data points. In our scenario, this data hierarchy con-
tains the semantically-meaningful visual feature space. Our approach
allows users to keep track of both the geographical and semantic inter-
pretations of the data (Sec. 4).

2 RELATED WORK
2.1 Computer vision and geo-tagged images

Computer vision and especially CNNs are powerful tools for analyzing
city visual qualities due to its ability to comprehensively capture visi-
ble features in image data. Applications of computer vision analysis to
geo-tagged datasets have been growing in popularity. Many existing
works focus on finding the geo-locations of objects or scenes. For ex-
ample, Zhou et al. [43] tried to recognize city identity by associating
scene attributes with location coordinates, and were inspired by the
SUN scene attributes dataset [27]. Zheng et al. [42] and Li et al. [19]
work on recognizing landmarks in cities. Hays et al. [13] inferred
the geographical coordinates of images by using hand-designed image
features through a data-driven scene matching approach, and Lin et
al. [20] combined satellite images with ground images to more accu-
rately pin down the geographical coordinates of an image. Workman
et al. [36] used PlacesNet, ImageNet features, and a trained support
vector machine (SVM) with radial basis function kernels to identify
places in San Francisco.

Our goal is different from these kinds of work, as we do not aim
to localize images. Instead, we try to discover how visual similar-
ity/dissimilarity might exist between neighborhoods both within and
across cities. Some works have studied the topic of city visual iden-
tity and similarity detection. Doersch et al. [10] classified mid-level
features with SVMs to discover relevant image patches that contain
distinctive architectural elements, and looked into the distribution of
those elements across regions. In comparison, we learn the features

that are distinctive in hopes of better discovering what makes a neigh-
borhood distinct. Further, we attempt to discover a hierarchy of ‘per-
spectives’ on neighborhoods via an unsupervised clustering approach
on the learned features, to discover both visual and geo-spatial patterns
for neighborhoods.

Other works try to infer unseen urban context from what is seen
in an image: Naik et al. [25] correlated a safety index with scene at-
tributes, and Khosla et al. [15] used the “distance to McDonald’s” met-
ric to imply the relationship between scene and general urban struc-
tures. Arietta et al. [3] developed a method to automatically identify
and validate predictive relationships between the visual appearance of
a city and its non-visual attributes. Our learned feature representation
can also be used in this way, e.g., to predict house prices from neigh-
borhood appearance.

2.2 Visual analytics of spatial data

Urban analysis is an application domain frequently explored by the vi-
sual analytics community in recent years [41]. While some works in
this field has been functionality driven, like those with regards to trans-
portation analysis (Wang et al. [34], Di Lorenzo et al. [9]), others try
to infer patterns and information regarding urban places such as mo-
bility pattern discovery (von Landesberger et al. [32], Wu et al. [37])
or place semantics discovery (Andrinko et al. [2], Yu et al. [40]).

The real world connection in urban analysis inevitably requires
geographically-embedded data structures, which can be a challenging
spatial and non-spatial visualization integration problem. Many re-
searchers have designed approaches for various non-spatial data struc-
tures in this pairing. For example, Yang et al. [38] incorporated map
and matrix charts and used a “call out” method to display point-to-
point relationships of geolocations inside of matrices. Love et al. [21]
addressed spatial data where each data point has multiple possible val-
ues under different circumstances. Here, individual data points are
sliced and diced within specific spatial contexts. Guo et al. [12] vi-
sualized spatial multi-feature datasets through a self-organizing map
clustering such that different combinations of feature values translate
to a 2D space for geographic map coloring.

Our data representation shares similarities across these three ap-
proaches: data points are arranged into largely-contiguous geographic
regions (neighborhoods) with a need to assess geographic relation-
ships on a map (comparing different neighborhoods), and each data
point has multiple values from the learned visual features which lie
within a clustered hierarchical structure. Existing approaches typi-
cally fail to represent all of these elements at once: matrices do not
show hierarchies; slicing and dicing fails to show relationships among
different data points; self-organizing maps lose geographic informa-
tion.

Our approach attempts to allow exploration across this data rep-
resentation by organizing extracted image features into a hierarchy.
Traditionally, spatial proximity is used to represent clusters for hu-
man evaluators. For example, t-SNE [23] is designed specifically to
project distance in feature space to distance in visual space. Edge
bundling [14] also helps viewers identify clusters using reduced edge
distance. However, since the spatial channel in our representation is
constrained to represent geographic information, we use a coordinated
view and the concepts of connection in tree diagrams and containment
in circle diagrams to convey the idea of a cluster (Fig. 1).

3 EXTRACTING VISUAL FEATURES OF URBAN PLACES

Visual urban district analysis requires us to scalably obtain a useful
representation of visual features from street view images. Our inves-
tigation had four stages: First, we collected street-level image data
through the Google Street View API. We also acquired neighborhood
boundary data from the Zillow Neighborhood Boundaries (Sec. 3.1).
Next, we computed summary appearances across a city using semantic
segmentation, which helps identify greenery, open spaces, and build-
ing color (Sec. 3.2). Then, we trained a convolutional neural network
to classify the street view images according to the neighborhoods in
which they are located. The purpose of this step is two-fold: to eval-
uate to what extent perceptual neighborhoods align with our labeled
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Fig. 2. Images are requested from coordinates within a 6 km radius
covering the urban area, with each coordinate point represented by four
images 90 degrees apart. Grey circles are coordinate sample points. As
typically only road areas can be sampled for imagery, there are missing
data, e.g., in parks.

neighborhood boundaries, and as a way to learn a representation for
neighborhood appearance (Sec. 3.3). Finally, we take the learned vi-
sual features from this network and cluster them hierarchically to pro-
duce a representation of the visual features which can be easily in-
spected using a visualization system (Sec. 3.4).

3.1 Data collection

Using the Google Street View API, we densely sampled four cities
in the United States: Boston, Chicago, New York, and San Fran-
cisco. These cities were chosen for presentation because they are
‘famous’: their appearances and their similarities/dissimilarities are
widely known. For each city, we drew a 6 km radius circle cover-
ing the major urban area, and collected images from a grid of lat-long
coordinates within that circle. The spacing of the grid points are as
follows: 0.0015° apart in longitude, and AL® apart in latitude, where

0.0015

cos( Lf;‘g" *TT)

where Lat .y is the city’s latitude. The adjustment in latitude as com-
pared to longitude ensures the earth-surface distance between adjacent
‘rows’ is the same as that of adjacent ‘columns’. At each coordi-
nate grid point, we collected 4 images with camera headings of /°,
(h+90)°, (h+ 180)°, (h+270)° respectively, where & is a random
number between 0 and 90 for different grid points. The randomness
prevents unexpected bias when some parts of a city have a north-south
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Fig. 3. Semantic segmentation of street scenes allows us to reduce
the complexity of the image representation, and perform class-specific
appearance modeling.

street network while other parts have a diagonal-direction street net-
work. Each image has 480 x 360 pixels (Fig. 2). After manually
removing indoor and other invalid images from the obtained dataset,
we had collected approximately 25,000 images from each of our four
cities, totaling 100,000.

Additionally, we collect administrative district boundaries from the
Zillow Neighborhood Boundaries database. This data is used as the
ground truth labels for the neighborhood recognition task (Sec. 3.3.1).

3.2 Hand designed image features

220 Before proceeding with deep learning, we conducted an ex-
ploratory research on the effectiveness of human-identified image fea-
tures in identifying various spatial patterns within and across cities.
To discover broad spatial patterns within and across cities, we iso-
lated specific semantic image segments and applied summary statistics
across image pixels within each segment. We use SegNet [5], a trained
CNN model which classifies pixels in a street view image into seman-
tic classes such as trees, street signs, and cars (Fig. 3). With this, we
can isolated pixels with classes that are most predictive to a task.

First, we counted all pixels belonging to the ‘sky’ and ‘tree’ classes
and calculated the proportion of sky and tree area for every image.
These values are averaged across the 4 images obtained for each lat-
long coordinate (Sec. 3.1), and assigned as an attribute of each coordi-
nate. These two attributes signify how ‘open’ a location is, e.g., high-
or low-rise buildings, and how much greenery there is in an urban area.

Something slightly more complicated is needed to analyze build-
ings. If we chose to look at the ‘dominant building facade color’
as a major representative visual feature, then we must employ color
quantization techniques to select a representative building color. For
instance, we might wish variations in red brick appearance to be aver-
aged, and all window pane and frame colors to be ignored. Thus, we
have a clustering problem.

After experimenting with both K-Means [4] and Mean-shift [8]
clustering algorithms, we chose the latter because K-Means often re-

2000
Top 5 representative colors via Mean-shift algorithm
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Fig. 4. Original street view images and their corresponding semantic
building segmentation, along with the top five representative facade col-
ors generated by the Mean-shift algorithm, Both the original image and
the segmented image are concatenations of the four street view images
taken from the same geographic coordinate.
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Fig. 5. Top: Visualization of image segments statistics reveals pro-
nounced city patterns that conform to common sense: districts such as
Chestnut Hill (A), Lincoln Park (B), Central Park (C), Presidio (D) show
high greenery amounts; city centers (E, F, G, H) present a lower level
of sky area in images. Bottom: The Boston building color map. The
discernible boundary between the white and the brown areas of Boston
coincides with the boundaries of two neighborhoods: Back Bay (I) and
South End (J).

sulted in balanced clusters and thus grayish representative colors, yet
we wish to capture a distinctive saturated color. Mean-shift preserved
the vividness of the original image as the representative color would
remain largely invariant to small changes in the quantile size (Fig. 4.

Figure 5 shows each of the greenery, openness, and building color
attributes mapped geographically. The patterns revealed in these maps
agree with our personal perceptions of these cities. Even with just
these summary statistics, we can begin to see some boundaries of per-
ceptual neighborhoods. With this, we proceeded with deep learning.
With automatically detected image features, what additional insights
can we get from the dataset?

3.3 Learning and clustering boundary-trained features

Simpler approaches like the summary statistics in the previous section
typically have insufficient descriptive power to separate sometimes
very similar visual appearances. To evaluate in a more comprehen-
sive way, many more visual features are needed from each image, and
an automated process is required for feature extraction. With massive
data and modern compute, we can do this by learning the visual feature
representation using convolutional neural networks (CNN) [17, 11].

3.3.1

CNNs apply many layers of filters to images to transform them from
pixel representations into feature representations. Then, we can use
these features to make predictions, such as predicting the geographic
location of an image from its appearance. To optimize an effective

CNN training on neighborhoods
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Fig. 6. Diagram of training and prediction process using AlexNet CNN
(image based on original ImageNet paper [16], Fig. 2. Red rectangles:
Fully-connected Layer 2, contains the 4096 features which we extracted
as the feature representation of each image.
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Fig. 7. Objective energy loss (left) and classification error rate (right) as
CNN training progresses.

feature representation, CNNs require huge amounts of training data
along with corresponding labels to give feedback to the network as to
whether a certain prediction was correct or not (Fig. 6). In our case,
the labels are which neighborhood the image comes from (Sec. 3.1).

We begin our learning process by splitting our dataset randomly
into training, validation, and test sets in portions 4/6, 1/6, and 1/6 re-
spectively. Then, we used the training/validation set to train the model
to classify images according to their neighborhood names, using the
AlexNet architecture [16] along with the correct number of class out-
puts in the final layer to correspond to the total number of neighbor-
hoods in our study. The AlexNet architecture was chosen because it is
well-known for giving good results on scene recognition tasks, and is
relatively fast to train. We use the MatConvNet framework [31].

Fig. 7 shows the network training progress, where the model starts
to over-fit after the 40th epoch. Final top 5 validation error lies around
25%, which shows the difficulty of the task. One important factor
is the limitation of data for some small neighborhoods: the number of
coordinates that fall into their boundaries may be insufficient for effec-
tive training, and denser sampling would produce mostly repetition.

3.3.2 Distinguishing districts

What has the training learned and does it makes sense to a human
with knowledge of the area? Fig. 8 plots the top eight images across
five areas of Boston for which the network is most confident about
its classification prediction. This can be interpreted as answering the
question ‘which images of a neighborhood are most different from
other neighborhoods?’. These images demonstrate some visual con-
sistency within neighborhoods and visual distinction across neighbor-
hoods, though this pattern in not as strong as in work which takes the
same learning and classification approach but across entire cities [18].



To appear in an IEEE VGTC sponsored conference proceedings

BROOKLNE 0245:055  BROOKLIE 0264506

% 2
GROOKUNE 02645076 BROOKUINE 02445064

SROOKUNE 0265070

ik
3

"OROOKUNE 0245: 084 BROOKUNE 02045.0.5 'BROOKUNE,0265:0.8
<y .

BackBay. 044

Beaconhil; 086

0 Cambridgeport: 050 ‘Cambridgeport: 0.8 - cmw
Fig. 8. Images from five Boston neighborhoods (rows) with highest prob-

ability of being from the corresponding administrative districts.

What the algorithm cannot learn is also interesting. Intuitively,
some neighborhoods might be too similar to each other to be distin-
guished; while other neighborhoods might have huge intra-class vari-
ance which can confuse the classifier. Either case could result in in-
adequate prediction power. For our study of the visual appearance of
neighborhoods rather than the administrative district boundaries, sit-
uations where the model cannot distinguish between two districts are
of equal importance to where it performs well, as it implies that the
districts are visually similar.

Figure 9 shows a matrix of ‘misclassified’ cases among all Boston
neighborhoods. The brightness of the cells indicate what percent of
images in column categories (label data) were misclassified as row cat-
egories (predicted labels). The matrix can also be regarded as a node-
link graph where nodes represent all the categories and links represent
the levels of similarities between each pair of categories (i.e., an affin-
ity matrix). We can apply a spectral clustering [26, 33] to the affinity
matrix to cluster the nodes (neighborhoods) based on how strongly
they are linked with each other.

Then, we sorted the order of neighborhoods in the matrix based on
the result of this clustering process, to make neighborhoods that fall
into the same cluster be near each other. Both columns and rows in
Figure 9 follow this ordering. As we could tell from the red square,
the most strongly-linked (having higher cell values) cluster of neigh-
borhoods contains the North End, Downtown, the Leather District,
Chinatown, and Back Bay (see A, B, C, D, and E in Fig. 10 for their
geo-location). Those readers familiar with the city should find this re-
sult satisfying, as these areas constitute the city center (minus its large
park), and are visually distinct from the farther-out suburb areas or the
nearby seaport We varied the number of clusters and plot their results
on maps (Fig. 10); as expected, districts with similar visual character-
istics tends to be geographically close.

3.3.3 Limitations of neighborhood-based classification

From these findings, it is clear that simply applying a neighborhood-
based classification approach does not make best use of the learned
visual features. There are three reasons for this:

1. The granularity of our training label neighborhoods is insuffi-
ciently fine. Visual variance within the same neighborhood usu-
ally defies a single description.

2. ‘Official’ delineation of neighborhoods do not necessarily align
with how neighborhood are perceived by humans; and often
these boundaries are purely artificial and are prone to human ma-
nipulation. For instance, consider gerrymandering, a situation
where politicians redistrict natural neighborhoods into new po-
litical boundaries for the purpose of getting more vote from the
populations by region [1]). Even if official and perceptual neigh-
borhood boundaries did not disagree with each other, it would
still be interesting to learn the peculiarities where some parts of
the city do not fall into their correspondent “categories”. Simple
classification does not allowed for these explorations.

Ground truth categories
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Fig. 9. Confusion matrix for areas of Boston. Brighter values indicate a
higher rate of misclassification in the test set. Columns and rows were
sorted by cluster id after applying spectral clustering (n_clusters=5) to
all neighborhoods. Red square: The most strongly-linked cluster of the
North End, Downtown, Chinatown, the Leather District, and Back Bay
all share strong visual similarities.

3. The method cannot detect visual commonalities among different
neighborhoods (or even different cities), which would provide an
interesting pattern to indicate how prototypical design patterns
have influence across borders. This might reflect important facts
about the cities including zoning, cultural influence, or the trend
of urban sprawl.

Therefore, there is need for a method which would be able to re-
define the boundary of neighborhoods, purely from image features,
using a bottom-up approach. Thus, we use our CNN in a different
way: as a learned representation of visual features which we can use
to interactively explore the relationships in the data. In the following
sections, we demonstrate a machine learning techniques to let ‘per-
ceptual neighborhoods’ emerge automatically from learned image fea-
tures (Sec. 3.4), with an interactive visualization tool to help humans
interpret and evaluate the results (Sec. 4).

3.4 Hierarchical clustering of visual features

In Sections 3.3.1 and 3.3.2, we investigated the classification predic-
tion of to which neighborhood a certain image belonged, and found
this method insufficient for many analysis tasks. Next, we aim to make
better use of the learned visual features from the CNN’s intermediate
layers.

With the trained model from Section 3.3.1, we perform a forward
pass on the test set of 17009 images. For each image, we extract the
output from the second fully-connected layer, which is just before the
final prediction layer of the neural network (indicated in Fig. 6 with
red rectangles). This is represented as a 4096 dimensional vector for
each image. Each vector element is either a positive number or zero,
the value of which indicates the level of discernability of a specific
visual feature as ‘seen’ by the neural network in that image. While
these features can be inspected as to what they contain [39], at this
depth in the network they are ‘unnamed’ and are often inconspicuous
in their visual meaning.

As such, inspecting spatial distributions of these features in a simi-
lar way to in Figure 5 becomes difficult. Instead, we draw on clustering
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Fig. 10. Spectral clustering of neighborhood misclassification rates pro-
duces geographic clusters across the city. Bostonians past and present
will notice the separation of industrial, commercial, and residential dis-
tricts across these clusters. (A, B, C, D, E represent the 5 neigh-
borhoods with the strongest linkage in Fig. 9: North End, Downtown,
Leather District, Chinatown, and Back Bay, respectively.

to both highlight pronounced variances and to reduce the dimension-
ality of the data being presented to a human for inspection. Clustering
these 4096 x 17009 data is a challenge. We found it difficult to apply
K-Means, DB Scan, or Spectral Clustering (RBF kernel) to this data,
as setting parameters to produce a useful result was hard. Instead,
we applied agglomerative clustering with Ward linkage and Euclidean
affinity [28]. This allows the user to inspect and vary the final cluster-
ing result to their desire by changing the level of agglomeration.

This algorithm iteratively merges the most similar data samples into
clusters. Each iteration creates a new level of hierarchy, where the
more dissimilar two clusters are, the later in the interative process they
are merged (Fig. 11). After clustering, we can ‘cut’ this tree hierarchy
at any desired threshold of similarity, to receive any number of clusters
(top row, Fig. 12).

This is a desirable property for our task because, when looking at
visual characteristics of urban areas, researchers are interested in both
the different types of urban scenes (categorical) and how different they
are from each other (continuous). For example, residential areas built
at different time periods might look slightly different in style (contin-
uous), but are very different from an industrial area (categorical). In
other words, measures for visual similarity should be able to be catego-
rized at different continuous values. Hierarchical clustering provides
this function.

How can we evaluate that this produces meaningful results? The
evaluation dilemma here is the absence of ground truth. Indeed, the
whole point of developing this bottom-up clustering algorithm is to
challenge the existing boundary system. Thus, the best we can do to
measure success is to include a human in the loop and allow both their
knowledge of the geography and their perception of image similarities
to judge the outcome. Given this, interactive visualization becomes
the natural next step.

4 INTERACTIVE VISUALIZATION

Designing an interactive visualization for the task of exploring these
learned hierarchical feature representations requires combining geo-
spatial data with our similarity hierarchy of visual features. Common
methods for displaying tree-structured data do not preserve spatial re-
lationships between data points; yet, this is core to our geographic
analysis task. Further, our bottom-up hierarchical clustering approach
provides the ability to observe how neighborhood boundaries change
as the hierarchy is explored, and cutting this hierarchy provides the
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Fig. 11. Hierarchy-constructing processs in Agglomerative Clustering.
Step 1 shows a collection of data points with different distances from
each other in a one-dimensional space. From Step 2 to 5, the algorithm
recursively finds the pair of nearest data points (indicated by the orange
dotted line in each step) and merged them into a sub-tree. If one or both
of the data points pair belongs to existing sub-trees, the sub-trees are
merged with each other. Decision threshold increases with the steps. In
the end, all data points become part of the adjacency hierarchy.

basis for exploring different perspectives on the visual features and
challenging existing neighborhood boundaries.

However, hierarchical tree data can be difficult to comprehend when
we wish to make sense of categories within the tree across different
cutting thresholds:

e How might we allow users to vary the cutting threshold up to
their desired granularity, and still convey a bigger picture of the
degree of similarity/dissimilarity over the entire data set?

e How might we explain the phenomenon that, as the threshold
varies, child and parent categories appear and disappear, and the
assignment of a single data point varies?

e How might we express parent-children relationships among cat-
egories, especially when the positions of data points are geo-
spatially confined?

Therefore, we developed a interactive visualization tool for analyz-
ing this data representation, using D3.js [7]. The goal is for a human
interacting with the interface, for instance, an urban planner, to be able
to use both their knowledge of the geography and their perception of
the similarities in the learned visual features for analysis. This tool
might also be useful for researchers who wish to assess the validity of
their machine learning-based approaches when applied to geo-spatial
image data.

4.1 Interface

Our solution uses three coordinated view to present the data repre-
sentation: the hierarchy is shown by a dendrogram, the categories are
shown by a circle packing, and the geo-locations are shown by a choro-
pleth map (Fig. 1). The dendrogram at the top provides users with the
expert textual labels for the visual feature categories (‘suburban’, ‘res-
idential’) which form from cutting the hierarchy at a particular level,
along with an interface to expand each level into its child clusters.
The choropleth map (upper middle) is the bridge between the hierar-
chy of visual clusters and geographic city locations in the city. The
circle packing (lower middle) expresses clearly the containment or
parent-child relationships between different visual features and their
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Fig. 12. Dendrogram and containment charts depicting two views of the same hierarchy across different decision thresholds. In sub-images 1 -
4, “current” categories under their respective decision thresholds (dotted line) are indicated in orange. The respective visual properties of the two
charts help users to comprehend the notion of “categories” in the context of a hierarchy.
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Fig. 13. Demonstration of a cluster exploration interaction. Left: Two visual clusters are observed, representing the top-level separation between
high-density (orange, A) and low-density (blue, B) environments. E.G., Boston downtown (middle, left) has comparable density to most of Manhattan
(middle, third from left). The hierarchy of potential clusterings is shown in the circle packing (bottom). Right: The user expands cluster B in the
dendrogram (top), and clusters C (dark blue) and D (green) branch out. At the same time, the color for cluster B fades out, and only selected
categories are highlighted with color. Unrelated clusters such as A remain stable in all three views, providing context.

representative street view images. Colors across all three charts repre-
sent the same set of street view images, and so provides the concep-
tual link across views. This helps to relate real-world geo-locations
to an abstract hierarchy of data which can be interactively cut at dif-
ferent thresholds to explore different clusterings. Once the hierarchy
is formed, each level is assigned an intuitive label by an expert via
data inspection, e.g., ‘suburban’, or ‘residential’, for easy user naviga-
tion. Figure 13 demonstrates a cluster exploration interaction, while
Figure 14 demonstrates how individual clusters are queried for their
corresponding street-level images.

While it might seem redundant to include both a dendrogram and a
circle-packed representation of the visual characteristic hierarchy, they
are intended to emphasize the continuous versus categorical aspects of
this hierarchy, respectively. The branch analogy in the dendrogram
is revealing for our application because the threshold level at which
nodes are merged with their siblings is indicated by the horizontal po-
sition of the nodes (Fig. 13). For the circle-packing chart, the diameter
of the circles corresponds to the number of images in the set. One con-
fusing aspect with the dendrogram is that, since each node in the chart
appears similarly as a small dot, users tend to comprehend each dot as
a coexisting entity rather than as entities which appear or disappear de-
pending on different thresholds. Circle containment clarifies this point
visually by showing that one category is a part of another and can be
further split into sub-categories. To highlight this point further, only
those categories which are currently shown are colored, with the oth-
ers of no fill color. The map view further accentuate this by showing

colored data points that correspond to the current colored categories.
Since no area on the map is ever not colored, it is easy to follow that
unfilled categories are a ‘state’ of currently colored categories.

To summarize, the use of coordinated views provides the context
and relations necessary to help users understand the correspondence
between the real-world geo-locations and the hierarchical construct of
learned visual features.

4.2 Usage scenario: model evaluation

One use for our visualization is to evaluate our machine learning ap-
proach of CNN and unsupervised clustering. Unlike many analytics
schemes designed to address model accuracy issues, interactive visu-
alizations for unsupervised training schemes are almost mandatory be-
cause the performance of a model cannot be verified against a ground
truth labeling.

Researchers would be interested in, say, the biggest difference
among all image samples that the model detects, as well as how much
more similar area A is to B compared with A to C. When we take
display and perception constraints into consideration, this conflict ap-
pears on even more levels: it would be hard to display or to consume
the large number of categories which result from a binary tree of visual
features, where each image could be considered as a category in itself.

The solution was to use interactivity to control the display complex-
ity, while allowing granularized comparison at the same time. Please
see our video for a demonstration. The researcher would start with the
root node which contains all images in the dataset, without any parti-
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Fig. 14. Clicking the circle hierarchy categories fetches the street-level
imagery which best represents that visual characteristic. In snapshots
1 (middle) and 2 (bottom), the user clicks on the largest yellow and
red circles respectively, and discovers that the yellow circle represents
images that contain more high-rise buildings than the red one. This is
reflected in the map of New York (top, third from left), in which Manhattan
is mostly yellow.

tioning. Then, they click on the root node so that it splits into two sets
that represent the most significant difference among the entire image
set. Following this, they would observe the map for corresponding col-
ored areas to evaluate whether the geo-space these clusters occupy ac-
tually have the most salient visual dissimilarity. If this outcome looks
reasonable, it provides evidence to the researcher that the model is
functioning as intended. Once the reseracher become interested in a
more detailed portrait of data within a certain category, they click on
that node to show the next child clusters on demand.

For example, in Figure 13, areas A ‘high density’ and B ‘low den-
sity” are two child categories of the root note. As the user inquires into
sub-categories of B ‘low density’, which contains children C ‘open,
suburban’ and D ‘open, road, suburban residential’, the maps recolor
to accommodate three categories. Area A remains the same color,
which helps users to keep track of the higher-lever structure of the hi-
erarchy. The color scale, which is in proportion to the Y positions of
nodes in the tree chart, also provides a reasonable separation of col-
ors where the color distances indicate the visual similarity distances
among all categories.

As users investigate the children of more and more categories, it
would sometimes become difficult to discern the marginal difference
on the map when an additional node is expanded or contracted. To
avoid the visual confusion, the particular node that the user is oper-
ating on would first fade out, and then show the color(s) of the new
categories (Figure 15). This emphasizing technique helps user atten-
tion to follow the part of the chart that has changed.

In general, the geo-spatial distribution of image clusters conforms
to human intuition about the outcome of this image clustering ap-
proach (Fig. 13): the primary distinction captured is that between high-
density and low-density regions in the cities. As we further partition
the dataset, the cluster boundaries shown on the map tend to conform
to human perception. When clicking on the circles to view images
in a category (Fig. 14), it is typically not difficult to understand why
they were grouped into the same set. Generally, at a local scale, visu-
ally similar images tend to be geo-spatially close, e.g., because high-
density areas within one city tend to concentrate; at a scale across our
four US cities, corresponding neighborhoods/regions are also visually

close to each other, e.g., because high-density areas in Boston tend to
look like high-density areas in Chicago.

4.3 Usage scenario: exploring in which area to live

Besides model evaluation, from the beginning of the design stage we
wanted the visualization not only to be useful for researchers who
work on the model themselves, but also for audiences who might not
be automatically familiar with the methodology or model structure to
begin with. Here we discuss one possible scenario as for how the vi-
sualization addresses both the model explanatory requirement as well
as model evaluatory requirement.

Imagine you wish to gain a general understanding of the visual char-
acteristics of an unfamiliar urban area. This demand occurs frequently
when we explore where to live in a new city, and are wondering where
to live. Despite the fact that services like Google Street View provides
imagery of virtually any point in a city, there is no easy way to analyze
this visual data in aggregate across neighborhoods. We might find the
most convenient answers still lie in the perspective of a friend who
lives there, or simply in visiting in person.

However, our learned visual features and visualization system can
help, since it provides a quick and straightforward way for people to
see this type of visual information at scale without requiring repeated
point-by-point sampling on the map for street-level city imagery. If a
user knows a particular area A that would be ideal for future housing,
and wants to discover other similar areas to expand their selection,
they are able to simply look for areas with the same color as A on the
choropleth map. In this respect, training our representation (including
neural network and clustering algorithm) serves as a data processing
step to reduce the dimensionality of the image data into something that
is easy to digest.

5 DISCUSSION AND FUTURE RESEARCH

With the help of our tool, we were able to inspect how the neuron
network sees cities, across different levels of differentiation and across
different urban scenes. This CNN inspection helps the user to generate
insight about the city. Our tool also helps generate perspective into
how the CNN model structures visual information. For example, by
applying feature agglomeration (an agglomerative clustering but on
column space) and inspecting the results with our tool, we might be
able to see the relative ‘importance’ of visual features, suggested by
how deep these features are in the learned hierarchy, when the CNN is
making sense of a highly homogeneous dataset like street view images.

One related question which we have not addressed is whether the
fact that the CNN model is trained based on neighborhoods has any-
thing to do with which visual features are learned. What if the model
was trained to recognize cities, or to identify objects in scenes? Will
the visual feature representation or the final clustering result be differ-
ent? These questions are still open for future research.

Another question is how the learned visual features relate to latent
non-visual characteristics of cities, e.g., house prices. To explain this
point, we performed an experiment to test whether our features are
related to house prices. We collected 500+ house price listings for
Boston, assigned the values to the image points by proximity, and then
split the dataset into training and testing as before. We learned a classi-
fier for house prices using support vector regression with a radial-basis
kernel [29], using two sets of features: one using just the geographic
features of the data (latitude, longitude), and one using just the learned
visual features from our model. Figure 16 compares the actual prices
(X axis) to the gredicted values (Y axis). The prediction using vi-
sual features (R~ = 0.4) is better than the baseline model with only
geographic coordinates. Considering visual appearance with learned
features results in higher predictability of house prices.

This provides evidence that our attempts to learn ‘perceptual neigh-
borhoods’ actually captured something essential about the urban
space, rather than just being a collection of similar images that hap-
pen to be located close to each other. We anticipate the relationship
between the perception and the reality of cities to be worthwhile fu-
ture research.
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Fig. 15. When neighborhood A splits into A1 and A2, colors for B and C fade off, to allow users’ attention to focus on the change of A.
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